
SPR-P7-XXX-BLK

PERFORMANCE 7 SOLAR PANEL

430-450 W | Up to 22.2% Efficient

Framed glass-glass

Bifacial energy generation

Enhanced Power Density

With high efficiency TOPCon cell technology offering strong LID-resistance, increased bifacial energy capture, and a lower temperature coefficient, SunPower Performance panels are uniquely engineered to deliver more lifetime energy compared to standard solar panels.

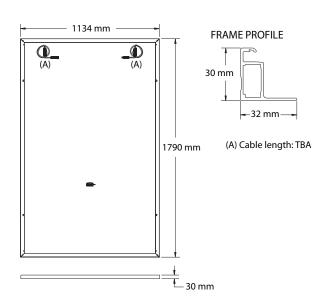
Proven Reliability

SunPower Performance panel durability is maximised in all types of weather conditions from an innovative shingled design that withstands the stresses of daily temperature swings, an advanced encapsulant that shields components from humidity-induced corrosion, and an advanced electrical architecture that offers resilience against the effects of shade, while mitigating hot-spot formation.

SunPower Complete Confidence Warranty

Each SunPower Performance panel is manufactured with the absolute confidence to deliver more energy and greater reliability over time—and backed for 25 years by one of the industry's most comprehensive warranties.

Product and power coverage 25 / 25 Years
Year 1 minimum warranted output 99.0%
Maximum annual degradation 0.4%


Electrical Data, Front STC Characteristics ¹					
	SPR-P7-450-BLK	SPR-P7-445-BLK	SPR-P7-440-BLK	SPR-P7-435-BLK	SPR-P7-430-BLK
Nominal Power (Pnom)	450 W	445 W	440 W	435 W	430 W
Power Tolerance	+3/0%	+3/0%	+3/0%	+3/0%	+3/0%
Panel Efficiency	22.2%	21.9%	21.7%	21.4%	21.2%
Rated Voltage (Vmpp)	34.6 V	34.3 V	34.0 V	33.7 V	33.5 V
Rated Current (Impp)	13.01 A	12.98 A	12.95 A	12.92 A	12.84 A
Open-Circuit Voltage (Voc) (+/-3%)	41.5 V	41.4 V	41.2 V	41.0 V	40.8 V
Short-Circuit Current (Isc) (+/-3%)	13.44 A	13.40 A	13.36 A	13.32 A	13.27 A

Bifacial Gain ²					
Pmax with 5% Bifacial Gain	473 W	467 W	462 W	457 W	452 W
Isc with 5% Bifacial Gain	14.12 A	14.07 A	14.03 A	13.98 A	13.94 A
Pmax with 10% Bifacial Gain	495 W	490 W	484 W	479 W	473 W
lsc with 10% Bifacial Gain	14.79 A	14.74 A	14.69 A	14.65 A	14.60 A
Pmax with 20% Bifacial Gain	540 W	534 W	528 W	522 W	516 W
lsc with 20% Bifacial Gain	16.13 A	16.08 A	16.03 A	15.98 A	15.93 A

Mechanical Data			
Impact Resistance	25 mm diameter hail at 23 m/s		
Solar Cells	N-type Topcon		
Glass	1.6 mm, heat strengthened glass		
Junction Box	IP-68, 3 bypass diodes		
Connector	Stäubli MC4		
Weight	21.6 kg		
Max Load	Wind: 2400 Pa, 245 kg/m² front & back		
IVIAX. LUAU	Snow: 5400 Pa, 550 kg/m² front		
Frame	Black anodized aluminum alloy		

Electrical Data			
Bifaciality (φPmax)	80% +/-10%		
Maximum System Voltage	1000 V IEC		
Temperature	-40°C to +85°C		
Maximum Series Fuse	25 A		
Power Temp. Coef.	-0.30% / ° C		
Voltage Temp. Coef.	-0.25% / ° C		
Current Temp. Coef.	0.045% / ° C		

Tests And Certifications (Pending)			
Standard Tests	IEC 61215, IEC 61730		
Fire Rating	Class C (IEC 61730)		
Quality Certs	ISO 9001:2015, ISO 14001:2015		
EHS Compliance	ISO 45001-2018, Recycling Scheme		
Ammonia Test	IEC 62716		
Dust and Sand	IEC 60068-2-68		
Salt Spray Test	IEC 61701 (maximum severity)		
LeTID Test	TUV 2fg 2689/04.19 (LeTID Detection)		
PID Test	IEC 62804		

Please read the safety and installation instructions.

Visit www.sunpower.maxeon.com/int/PVInstallGuideIEC

Paper version can be requested through

techsupport.ROW@maxeon.com

¹ Standard Test Conditions (1000 W/m² irradiance, AM 1.5, 25° C). NREL calibration Standard: SOMS current, LACCS FF and Voltage.

² The additional gain from the back side of the panel compared to the power of the front side of the panel at the standard test conditions. It depends on mounting (structure, height, tilt angle etc.) and albedo of the underlying surface.